Texas Examinations of Educator Standards™ (TExES™) Program

Preparation Manual

Mathematics 4–8 (115)
Table of Contents

Table of Contents ... 2
About The Test ... 3
The Domains ... 4
The Standards ... 5
Domains and Competencies ... 6
 Domain I — Number Concepts ... 6
 Domain II — Patterns and Algebra ... 8
 Domain III — Geometry and Measurement .. 10
 Domain IV — Probability and Statistics ... 11
 Domain V — Mathematical Processes and Perspectives 13
 Domain VI — Mathematical Learning, Instruction and Assessment 14
Approaches to Answering Multiple-Choice Questions 17
 How to Approach Unfamiliar Question Formats .. 17
 Question Formats ... 18
 Single Questions ... 19
 Clustered Questions ... 21
Multiple-Choice Practice Questions .. 24
Answer Key and Rationales ... 46
Study Plan Sheet .. 68
Preparation Resources .. 69
Appendix .. 71
 TExES CAT Tests Reference Materials ... 71
About The Test

<table>
<thead>
<tr>
<th>Test Name</th>
<th>Mathematics 4–8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Code</td>
<td>115</td>
</tr>
<tr>
<td>Time</td>
<td>5 hours</td>
</tr>
<tr>
<td>Number of Questions</td>
<td>100 multiple-choice questions</td>
</tr>
<tr>
<td>Format</td>
<td>Computer-administered test (CAT)</td>
</tr>
</tbody>
</table>

The TExES Mathematics 4–8 (115) test is designed to assess whether a test taker has the requisite knowledge and skills that an entry-level educator in this field in Texas public schools must possess. The 100 multiple-choice questions are based on the Mathematics 4–8 test framework and cover grades 4–8. The test may contain questions that do not count toward the score.

The number of scored questions will not vary; however, the number of questions that are not scored may vary in the actual test. Your final scaled score will be based only on scored questions.
The Domains

<table>
<thead>
<tr>
<th>Domain</th>
<th>Domain Title</th>
<th>Approx. Percentage of Test</th>
<th>Standards Assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Number Concepts</td>
<td>16%</td>
<td>Mathematics I</td>
</tr>
<tr>
<td>II.</td>
<td>Patterns and Algebra</td>
<td>21%</td>
<td>Mathematics II</td>
</tr>
<tr>
<td>III.</td>
<td>Geometry and Measurement</td>
<td>21%</td>
<td>Mathematics III</td>
</tr>
<tr>
<td>IV.</td>
<td>Probability and Statistics</td>
<td>16%</td>
<td>Mathematics IV</td>
</tr>
<tr>
<td>V.</td>
<td>Mathematical Processes and Perspectives</td>
<td>10%</td>
<td>Mathematics V–VI</td>
</tr>
<tr>
<td>VI.</td>
<td>Mathematical Learning, Instruction and Assessment</td>
<td>16%</td>
<td>Mathematics VII–VIII</td>
</tr>
</tbody>
</table>

NOTE: After clicking on a link, right click and select "Previous View" to go back to original text.
The Standards

Mathematics Standard I
Number Concepts: The mathematics teacher understands and uses numbers, number systems and their structure, operations and algorithms, quantitative reasoning and technology appropriate to teach the statewide curriculum (Texas Essential Knowledge and Skills [TEKS]) to prepare students to use mathematics.

Mathematics Standard II
Patterns and Algebra: The mathematics teacher understands and uses patterns, relations, functions, algebraic reasoning, analysis and technology appropriate to teach the statewide curriculum (TEKS) to prepare students to use mathematics.

Mathematics Standard III
Geometry and Measurement: The mathematics teacher understands and uses geometry, spatial reasoning, measurement concepts and principles and technology appropriate to teach the statewide curriculum (TEKS) to prepare students to use mathematics.

Mathematics Standard IV
Probability and Statistics: The mathematics teacher understands and uses probability and statistics, their applications and technology appropriate to teach the statewide curriculum (TEKS) to prepare students to use mathematics.

Mathematics Standard V
Mathematical Processes: The mathematics teacher understands and uses mathematical processes to reason mathematically, to solve mathematical problems, to make mathematical connections within and outside of mathematics and to communicate mathematically.

Mathematics Standard VI
Mathematical Perspectives: The mathematics teacher understands the historical development of mathematical ideas, the relationship between society and mathematics, the structure of mathematics and the evolving nature of mathematics and mathematical knowledge.

Mathematics Standard VII
Mathematical Learning and Instruction: The mathematics teacher understands how children learn and develop mathematical skills, procedures and concepts; knows typical errors students make; and uses this knowledge to plan, organize and implement instruction to meet curriculum goals and to teach all students to understand and use mathematics.

Mathematics Standard VIII
Mathematical Assessment: The mathematics teacher understands assessment, and uses a variety of formal and informal assessment techniques appropriate to the learner on an ongoing basis to monitor and guide instruction and to evaluate and report student progress.
Domains and Competencies

The content covered by this test is organized into broad areas of content called **domains**. Each domain covers one or more of the educator standards for this field. Within each domain, the content is further defined by a set of **competencies**. Each competency is composed of two major parts:

- The **competency statement**, which broadly defines what an entry-level educator in this field in Texas public schools should know and be able to do.
- The **descriptive statements**, which describe in greater detail the knowledge and skills eligible for testing.

Domain I — Number Concepts

Competency 001: *The teacher understands the structure of number systems, the development of a sense of quantity and the relationship between quantity and symbolic representations.*

The beginning teacher:

A. Analyzes the structure of numeration systems and the roles of place value and zero in the base ten system.

B. Understands the relative magnitude of whole numbers, integers, rational numbers and real numbers.

C. Demonstrates an understanding of a variety of models for representing numbers (e.g., fraction strips, diagrams, patterns, shaded regions, number lines).

D. Demonstrates an understanding of equivalency among different representations of rational numbers.

E. Selects appropriate representations of real numbers (e.g., fractions, decimals, percents, roots, exponents, scientific notation) for particular situations.

F. Understands the characteristics of the set of whole numbers, integers, rational numbers, real numbers and complex numbers (e.g., commutativity, order, closure, identity elements, inverse elements, density).

G. Demonstrates an understanding of how some situations that have no solution in one number system (e.g., whole numbers, integers, rational numbers) have solutions in another number system (e.g., real numbers, complex numbers).
Competency 002: *The teacher understands number operations and computational algorithms.*

The beginning teacher:

A. Works proficiently with real and complex numbers and their operations.
B. Analyzes and describes relationships between number properties, operations and algorithms for the four basic operations involving integers, rational numbers and real numbers.
C. Uses a variety of concrete and visual representations to demonstrate the connections between operations and algorithms.
D. Justifies procedures used in algorithms for the four basic operations with integers, rational numbers and real numbers and analyzes error patterns that may occur in their application.
E. Relates operations and algorithms involving numbers to algebraic procedures (e.g., adding fractions to adding rational expressions, division of integers to division of polynomials).
F. Extends and generalizes the operations on rationals and integers to include exponents, their properties and their applications to the real numbers.

Competency 003: *The teacher understands ideas of number theory and uses numbers to model and solve problems within and outside of mathematics.*

The beginning teacher:

A. Demonstrates an understanding of ideas from number theory (e.g., prime factorization, greatest common divisor) as they apply to whole numbers, integers and rational numbers and uses these ideas in problem situations.
B. Uses integers, rational numbers and real numbers to describe and quantify phenomena such as money, length, area, volume and density.
C. Applies knowledge of place value and other number properties to develop techniques of mental mathematics and computational estimation.
D. Applies knowledge of counting techniques such as permutations and combinations to quantify situations and solve problems.
E. Applies properties of the real numbers to solve a variety of theoretical and applied problems.
Domain II — Patterns and Algebra

Competency 004: The teacher understands and uses mathematical reasoning to identify, extend and analyze patterns and understands the relationships among variables, expressions, equations, inequalities, relations and functions.

The beginning teacher:

A. Uses inductive reasoning to identify, extend and create patterns using concrete models, figures, numbers and algebraic expressions.
B. Formulates implicit and explicit rules to describe and construct sequences verbally, numerically, graphically and symbolically.
C. Makes, tests, validates and uses conjectures about patterns and relationships in data presented in tables, sequences or graphs.
D. Gives appropriate justification of the manipulation of algebraic expressions.
E. Illustrates the concept of a function using concrete models, tables, graphs and symbolic and verbal representations.
F. Uses transformations to illustrate properties of functions and relations and to solve problems.

Competency 005: The teacher understands and uses linear functions to model and solve problems.

The beginning teacher:

A. Demonstrates an understanding of the concept of linear function using concrete models, tables, graphs and symbolic and verbal representations.
B. Demonstrates an understanding of the connections among linear functions, proportions and direct variation.
C. Determines the linear function that best models a set of data.
D. Analyzes the relationship between a linear equation and its graph.
E. Uses linear functions, inequalities and systems to model problems.
F. Uses a variety of representations and methods (e.g., numerical methods, tables, graphs, algebraic techniques) to solve systems of linear equations and inequalities.
G. Demonstrates an understanding of the characteristics of linear models and the advantages and disadvantages of using a linear model in a given situation.
Competency 006: The teacher understands and uses nonlinear functions and relations to model and solve problems.

The beginning teacher:

A. Uses a variety of methods to investigate the roots (real and complex), vertex and symmetry of a quadratic function or relation.
B. Demonstrates an understanding of the connections among geometric, graphic, numeric and symbolic representations of quadratic functions.
C. Analyzes data and represents and solves problems involving exponential growth and decay.
D. Demonstrates an understanding of the connections among proportions, inverse variation and rational functions.
E. Understands the effects of transformations such as \(f(x \pm c) \) on the graph of a nonlinear function \(f(x) \).
F. Applies properties, graphs and applications of nonlinear functions to analyze, model and solve problems.
G. Uses a variety of representations and methods (e.g., numerical methods, tables, graphs, algebraic techniques) to solve systems of quadratic equations and inequalities.
H. Understands how to use properties, graphs and applications of nonlinear relations including polynomial, rational, radical, absolute value, exponential, logarithmic, trigonometric and piecewise functions and relations to analyze, model and solve problems.

Competency 007: The teacher uses and understands the conceptual foundations of calculus related to topics in middle school mathematics.

The beginning teacher:

A. Relates topics in middle school mathematics to the concept of limit in sequences and series.
B. Relates the concept of average rate of change to the slope of the secant line and instantaneous rate of change to the slope of the tangent line.
C. Relates topics in middle school mathematics to the area under a curve.
D. Demonstrates an understanding of the use of calculus concepts to answer questions about rates of change, areas, volumes and properties of functions and their graphs.
Domain III — Geometry and Measurement

Competency 008: *The teacher understands measurement as a process.*

The beginning teacher:

A. Selects and uses appropriate units of measurement (e.g., temperature, money, mass, weight, area, capacity, density, percents, speed, acceleration) to quantify, compare and communicate information.

B. Develops, justifies and uses conversions within measurement systems.

C. Applies dimensional analysis to derive units and formulas in a variety of situations (e.g., rates of change of one variable with respect to another) and to find and evaluate solutions to problems.

D. Describes the precision of measurement and the effects of error on measurement.

E. Applies the Pythagorean theorem, proportional reasoning and right triangle trigonometry to solve measurement problems.

Competency 009: *The teacher understands the geometric relationships and axiomatic structure of Euclidean geometry.*

The beginning teacher:

A. Understands concepts and properties of points, lines, planes, angles, lengths and distances.

B. Analyzes and applies the properties of parallel and perpendicular lines.

C. Uses the properties of congruent triangles to explore geometric relationships and prove theorems.

D. Describes and justifies geometric constructions made using a compass and straight edge and other appropriate technologies.

E. Applies knowledge of the axiomatic structure of Euclidean geometry to justify and prove theorems.

Competency 010: *The teacher analyzes the properties of two- and three-dimensional figures.*

The beginning teacher:

A. Uses and understands the development of formulas to find lengths, perimeters, areas and volumes of basic geometric figures.

B. Applies relationships among similar figures, scale and proportion and analyzes how changes in scale affect area and volume measurements.

NOTE: After clicking on a link, right click and select "Previous View" to go back to original text.
C. Uses a variety of representations (e.g., numeric, verbal, graphic, symbolic) to analyze and solve problems involving two- and three-dimensional figures such as circles, triangles, polygons, cylinders, prisms and spheres.

D. Analyzes the relationship among three-dimensional figures and related two-dimensional representations (e.g., projections, cross-sections, nets) and uses these representations to solve problems.

Competency 011: *The teacher understands transformational geometry and relates algebra to geometry and trigonometry using the Cartesian coordinate system.*

The beginning teacher:

A. Describes and justifies geometric constructions made using a reflection device and other appropriate technologies.

B. Uses translations, reflections, glide-reflections and rotations to demonstrate congruence and to explore the symmetries of figures.

C. Uses dilations (expansions and contractions) to illustrate similar figures and proportionality.

D. Uses symmetry to describe tessellations and shows how they can be used to illustrate geometric concepts, properties and relationships.

E. Applies concepts and properties of slope, midpoint, parallelism and distance in the coordinate plane to explore properties of geometric figures and solve problems.

F. Applies transformations in the coordinate plane.

G. Uses the unit circle in the coordinate plane to explore properties of trigonometric functions.

Domain IV — Probability and Statistics

Competency 012: *The teacher understands how to use graphical and numerical techniques to explore data, characterize patterns and describe departures from patterns.*

The beginning teacher:

A. Organizes and displays data in a variety of formats (e.g., tables, frequency distributions, stem-and-leaf plots, box-and-whisker plots, histograms, pie charts).

B. Applies concepts of center, spread, shape and skewness to describe a data distribution.

C. Supports arguments, makes predictions and draws conclusions using summary statistics and graphs to analyze and interpret one-variable data.
D. Demonstrates an understanding of measures of central tendency (e.g., mean, median, mode) and dispersion (e.g., range, interquartile range, variance, standard deviation).

E. Analyzes connections among concepts of center and spread, data clusters and gaps, data outliers and measures of central tendency and dispersion.

F. Calculates and interprets percentiles and quartiles.

Competency 013: *The teacher understands the theory of probability.*

The beginning teacher:

A. Explores concepts of probability through data collection, experiments and simulations.

B. Uses the concepts and principles of probability to describe the outcome of simple and compound events.

C. Generates, simulates and uses probability models to represent a situation.

D. Determines probabilities by constructing sample spaces to model situations.

E. Solves a variety of probability problems using combinations, permutations and geometric probability (i.e., probability as the ratio of two areas).

F. Uses the binomial, geometric and normal distributions to solve problems.

Competency 014: *The teacher understands the relationship among probability theory, sampling and statistical inference and how statistical inference is used in making and evaluating predictions.*

The beginning teacher:

A. Applies knowledge of designing, conducting, analyzing and interpreting statistical experiments to investigate real-world problems.

B. Demonstrates an understanding of random samples, sample statistics and the relationship between sample size and confidence intervals.

C. Applies knowledge of the use of probability to make observations and draw conclusions from single variable data and to describe the level of confidence in the conclusion.

D. Makes inferences about a population using binomial, normal and geometric distributions.

E. Demonstrates an understanding of the use of techniques such as scatter plots, regression lines, correlation coefficients and residual analysis to explore bivariate data and to make and evaluate predictions.
Domain V — Mathematical Processes and Perspectives

Competency 015: *The teacher understands mathematical reasoning and problem solving.*

The beginning teacher:

A. Demonstrates an understanding of proof, including indirect proof, in mathematics.
B. Applies correct mathematical reasoning to derive valid conclusions from a set of premises.
C. Demonstrates an understanding of the use of inductive reasoning to make conjectures and deductive methods to evaluate the validity of conjectures.
D. Applies knowledge of the use of formal and informal reasoning to explore, investigate and justify mathematical ideas.
E. Recognizes that a mathematical problem can be solved in a variety of ways and selects an appropriate strategy for a given problem.
F. Evaluates the reasonableness of a solution to a given problem.
G. Applies content knowledge to develop a mathematical model of a real-world situation and analyzes and evaluates how well the model represents the situation.
H. Demonstrates an understanding of estimation and evaluates its appropriate uses.

Competency 016: *The teacher understands mathematical connections within and outside of mathematics and how to communicate mathematical ideas and concepts.*

The beginning teacher:

A. Recognizes and uses multiple representations of a mathematical concept (e.g., a point and its coordinates, the area of circle as a quadratic function in r, probability as the ratio of two areas).
B. Uses mathematics to model and solve problems in other disciplines, such as art, music, science, social science and business.
C. Expresses mathematical statements using developmentally appropriate language, standard English, mathematical language and symbolic mathematics.
D. Communicates mathematical ideas using a variety of representations (e.g., numeric, verbal, graphic, pictorial, symbolic, concrete).
E. Demonstrates an understanding of the use of visual media such as graphs, tables, diagrams and animations to communicate mathematical information.
F. Uses the language of mathematics as a precise means of expressing mathematical ideas.

G. Understands the structural properties common to the mathematical disciplines.

H. Explores and applies concepts of financial literacy as it relates to teaching students (e.g., describe the basic purpose of financial institutions, distinguish the difference between gross income and net income, identify various savings options, define different types of taxes, identify the advantages and disadvantages of different methods of payments).

I. Applies mathematics to model and solve problems to manage financial resources effectively for lifetime financial security as it relates to teaching students (e.g., distinguish between fixed and variable expenses, calculate profit in a given situation, develop a system for keeping and using financial records, describe actions that might be taken to balance a budget when expenses exceed income and balance a simple budget.)

Domain VI — Mathematical Learning, Instruction and Assessment

Competency 017: The teacher understands how children learn and develop mathematical skills, procedures and concepts.

The beginning teacher:

A. Applies theories and principles of learning mathematics to plan appropriate instructional activities for all students.

B. Understands how students differ in their approaches to learning mathematics with regard to diversity.

C. Uses students’ prior mathematical knowledge to build conceptual links to new knowledge and plans instruction that builds on students’ strengths and addresses students’ needs.

D. Understands how learning may be assisted through the use of mathematics manipulatives and technological tools.

E. Understands how to motivate students and actively engage them in the learning process by using a variety of interesting, challenging and worthwhile mathematical tasks in individual, small-group and large-group settings.

F. Understands how to provide instruction along a continuum from concrete to abstract.

G. Recognizes the implications of current trends and research in mathematics and mathematics education.
Competency 018: The teacher understands how to plan, organize and implement instruction using knowledge of students, subject matter and statewide curriculum (Texas Essential Knowledge and Skills [TEKS]) to teach all students to use mathematics.

The beginning teacher:

A. Demonstrates an understanding of a variety of instructional methods, tools and tasks that promote students’ ability to do mathematics described in the TEKS.

B. Understands planning strategies for developing mathematical instruction as a discipline of interconnected concepts and procedures.

C. Develops clear learning goals to plan, deliver, assess and reevaluate instruction based on the TEKS.

D. Understands procedures for developing instruction that establishes transitions between concrete, symbolic and abstract representations of mathematical knowledge.

E. Applies knowledge of a variety of instructional delivery methods, such as individual, structured small-group and large-group formats.

F. Understands how to create a learning environment that provides all students, including English-language learners, with opportunities to develop and improve mathematical skills and procedures.

G. Demonstrates an understanding of a variety of questioning strategies to encourage mathematical discourse and to help students analyze and evaluate their mathematical thinking.

H. Understands how technological tools and manipulatives can be used appropriately to assist students in developing, comprehending and applying mathematical concepts.

I. Understands how to relate mathematics to students’ lives and a variety of careers and professions.

Competency 019: The teacher understands assessment and uses a variety of formal and informal assessment techniques to monitor and guide mathematics instruction and to evaluate student progress.

The beginning teacher:

A. Demonstrates an understanding of the purpose, characteristics and uses of various assessments in mathematics, including formative and summative assessments.

B. Understands how to select and develop assessments that are consistent with what is taught and how it is taught.

NOTE: After clicking on a link, right click and select "Previous View" to go back to original text.
C. Demonstrates an understanding of how to develop a variety of assessments and scoring procedures consisting of worthwhile tasks that assess mathematical understanding, common misconceptions and error patterns.

D. Understands how to evaluate a variety of assessment methods and materials for reliability, validity, absence of bias, clarity of language and appropriateness of mathematical level.

E. Understands the relationship between assessment and instruction and knows how to evaluate assessment results to design, monitor and modify instruction to improve mathematical learning for all students, including English-language learners.
Approaches to Answering Multiple-Choice Questions

The purpose of this section is to describe multiple-choice question formats that you will typically see on the Mathematics 4–8 test and to suggest possible ways to approach thinking about and answering them. These approaches are intended to supplement and complement familiar test-taking strategies with which you may already be comfortable and that work for you. Fundamentally, the most important component in assuring your success on the test is knowing the content described in the test framework. This content has been carefully selected to align with the knowledge required to begin a career as a Mathematics 4–8 teacher.

The multiple-choice questions on this test are designed to assess your knowledge of the content described in the test framework. In most cases, you are expected to demonstrate more than just your ability to recall factual information. You may be asked to think critically about the information, to analyze it, consider it carefully, and compare it with other knowledge you have or make a judgment about it.

Leave no questions unanswered. Questions for which you mark no answer are counted as incorrect. Your score will be determined by the number of questions you answer correctly.

The Mathematics 4–8 test is designed to include a total of 100 multiple-choice questions, out of which 80 are scored. The number of scored questions will not vary; however, the number of questions that are not scored may vary in the actual test. Your final scaled score will be based only on scored questions. The questions that are not scored are being pilot tested to collect information about how these questions will perform under actual testing conditions. These pilot questions are not identified on the test.

NOTE: The Definitions and Formulas, Periodic Table of the Elements and calculator needed to answer some of the test questions can be found within the test by selecting the “Help” tab. See the Appendix for information about how to access these tools.

How to Approach Unfamiliar Question Formats

Some questions include introductory information such as a table, graph or reading passage (often called a stimulus) that provides the information the question asks for. New formats for presenting information are developed from time to time. Tests may include audio and video stimulus materials such as a movie clip or some kind of animation, instead of a map or reading passage. Other tests may allow you to zoom in on the details in a graphic or picture.
Tests may also include interactive types of questions. These questions take advantage of technology to assess knowledge and skills that go beyond what can be assessed using standard single-selection multiple-choice questions. If you see a format you are not familiar with, read the directions carefully. The directions always give clear instructions on how you are expected to respond. For most questions, you will respond by clicking an oval to choose a single answer choice from a list of options. Other questions may ask you to respond by:

- **Selecting all that apply.** In some questions, you will be asked to choose all the options that answer the question correctly.
- **Typing in an entry box.** When the answer is a number, you might be asked to enter a numeric answer or, if the test has an on-screen calculator, you might need to transfer the calculated result from the calculator into the entry box. Some questions may have more than one place to enter a response.
- **Clicking check boxes.** You may be asked to click check boxes instead of an oval when more than one choice within a set of answers can be selected.
- **Clicking parts of a graphic.** In some questions, you will choose your answer by clicking on location(s) on a graphic such as a map or chart, as opposed to choosing from a list.
- **Clicking on sentences.** In questions with reading passages, you may be asked to choose your answer by clicking on a sentence or sentences within the reading passage.
- **Dragging and dropping answer choices into “targets” on the screen.** You may be asked to choose an answer from a list and drag it into the appropriate location in a table, paragraph of text or graphic.
- **Selecting options from a drop-down menu.** This type of question will ask you to select the appropriate answer or answers by selecting options from a drop-down menu (e.g., to complete a sentence).

Remember that with every question, you will get clear instructions on how to respond.

Question Formats

You may see the following types of multiple-choice questions on the test:

- Single Questions
- Clustered Questions

On the following pages, you will find descriptions of these commonly used question formats, along with suggested approaches for responding to each type.
Single Questions

The single-question format presents a direct question or an incomplete statement. It can also include a reading passage, graphic, table or a combination of these. Four or more answer options appear below the question.

The following question is an example of the single-question format; it tests knowledge of Mathematics 4–8 Competency 010: The teacher analyzes the properties of two- and three-dimensional figures.

Example

1. The Great Pyramid at Giza is approximately 150 meters high and has a square base approximately 230 meters on a side. What is the approximate area of a horizontal cross section of the pyramid taken 50 meters above its base?

 A. 5,880 square meters
 B. 11,760 square meters
 C. 23,510 square meters
 D. 35,270 square meters

Suggested Approach

Read the question carefully and critically. Think about what it is asking and the situation it is describing. Eliminate any obviously wrong answers, select the correct answer choice and mark your answer.

The horizontal cross section will be a square in the plane parallel to the base of the pyramid and 50 meters above it. In order to estimate the area of the cross section, you will need to know the approximate length of one of its sides. This can be calculated using your knowledge of proportions and the properties of similar geometric figures. In solving problems that involve geometry, drawing a diagram is often helpful.
The figure shows a vertical cross section through the center of the square base of the pyramid perpendicular to a side of the base. The measurements given in the test question have been transferred to the diagram. Notice that since \(CG + GF = 150 \), and it is given that \(GF = 50 \), then \(CG = 100 \). You must find \(BD \), the length of the sides of the square cross section. Also note that triangle \(CBD \) and triangle \(CAE \) are similar because they have two angles whose measures are equal; they share \(\angle C \) and the measure of \(\angle B \) is equal to the measure of \(\angle A \) since they are corresponding angles formed by a transversal and two parallel lines. Because the two triangles are similar, their altitudes and sides must be proportional and you can write:

\[
\frac{CG}{CF} = \frac{BD}{AE}.
\]

Now substitute the values for the lengths of the line segments to get

\[
\frac{100}{150} = \frac{BD}{230}.
\]

Solving this gives \(BD = 153.33 \). Since the horizontal cross section is a square, its area is the square of the length of \(BD \), or

\[
(153.33)^2 = 23,511.11 \text{ square feet}.
\]

Now look at the response options. The correct response is option C, rounded to the nearest ten square meters.

Setting up the proportion incorrectly as

\[
\frac{50}{150} = \frac{BD}{230}
\]

and using this value for the side of the cross section leads to option A. Option B results from assuming that the cross section is an isosceles right triangle instead of a square, and option D comes from assuming that the area of the cross section is

\[
\frac{100}{150} = \frac{2}{3}
\]

of the area of the base of the pyramid.
Clustered Questions

Clustered questions are made up of a stimulus and two or more questions relating to the stimulus. The stimulus material can be a reading passage, a graphic, a table, a description of an experiment or any other information necessary to answer the questions that follow.

You can use several different approaches to respond to clustered questions. Some commonly used strategies are listed below.

Strategy 1
Skim the stimulus material to understand its purpose, its arrangement and/or its content. Then read the questions and refer again to the stimulus material to obtain the specific information you need to answer the questions.

Strategy 2
Read the questions *before* considering the stimulus material. The theory behind this strategy is that the content of the questions will help you identify the purpose of the stimulus material and locate the information you need to answer the questions.

Strategy 3
Use a combination of both strategies. Apply the “read the stimulus first” strategy with shorter, more familiar stimuli and the “read the questions first” strategy with longer, more complex or less familiar stimuli. You can experiment with the sample questions in this manual and then use the strategy with which you are most comfortable when you take the actual test.

Whether you read the stimulus before or after you read the questions, you should read it carefully and critically. You may want to note its important points to help you answer the questions.

As you consider questions set in educational contexts, try to enter into the identified teacher’s frame of mind and use that teacher’s point of view to answer the questions that accompany the stimulus. Be sure to consider the questions only in terms of the information provided in the stimulus — not in terms of your own experiences or individuals you may have known.
Example

First read the stimulus (a description of the concept being studied).

Use the diagram and the information below to answer the two questions that follow.

![Velocity-time graph](image)

Students in a math class are investigating concepts related to motion in one dimension. The velocity-versus-time graph shows the velocity of a student walking in a straight line, collected at one-second intervals over a period of nine seconds.

Now you are prepared to address the first of the two questions associated with this stimulus. The first question measures Mathematics 4–8 Competency 007: The teacher uses and understands the conceptual foundations of calculus related to topics in middle school mathematics.

1. Which of the following methods could be used to estimate the student’s acceleration between \(t = 3 \) and \(t = 5 \) seconds?

 A. Find the average of the velocities at \(t = 3 \) and \(t = 5 \) seconds
 B. Find the equation of the curve that best fits the data and evaluate it at \(t = 4 \) seconds
 C. Find the length of the line connecting the velocities between \(t = 3 \) and \(t = 5 \) seconds
 D. Find the slope of the line connecting the velocities at \(t = 3 \) and \(t = 5 \) seconds
Suggested Approach

You are asked to estimate the acceleration of the student between 3 and 5 seconds, that is, the average acceleration over this time period. Average acceleration is the rate of change of velocity with respect to time. Therefore, divide the difference in the velocities at 5 and 3 seconds by the total time elapsed, here 5–3=2 seconds. You should recognize this expression as representing the slope of a line connecting two points, or the difference in the y-coordinates divided by the difference in the x-coordinates. Therefore, the correct response is option D.

Now you are ready to answer the second question. This question also measures Mathematics 4–8 Competency 007: The teacher uses and understands the conceptual foundations of calculus related to topics in middle school mathematics.

2. Which of the following methods could be used to estimate the total distance the student has traveled between $t = 0$ and $t = 5$ seconds?

 A. Find the median value of the velocities from $t = 0$ and $t = 5$ seconds, inclusive.
 B. Find the ratio of the velocities at $t = 0$ and $t = 5$ seconds.
 C. Find the area under the curve between $t = 0$ and $t = 5$ seconds.
 D. Find the average value of the velocity-over-time ratios for $t = 0$ and $t = 5$ seconds.

Suggested Approach

In order to calculate the distance traveled by the student during a particular time interval, multiply the rate of travel by the length of time the student is moving; in other words, $d = rt$ where d represents distance, r represents rate (velocity), and t represents time. For example, during the interval from $t = 1$ to $t = 2$ seconds, multiply the average velocity during the interval, approximately 0.25 m/s, by the length of the interval, $2 - 1 = 1$ second. This can be represented geometrically by the area of the rectangle of height $= 0.25 \text{ m/s}$ and base $= 1$ under the curve between $t = 1$ second and $t = 2$ second. To get an estimate of the total distance traveled by the student, you need to sum the distance traveled during each of the one-second intervals from 0 through 5 seconds. This is approximately equal to the area under the curve from $t = 0$ to $t = 5$ seconds. Therefore, option C is the correct response.
Multiple-Choice Practice Questions

This section presents some sample test questions for you to review as part of your preparation for the test. To demonstrate how each competency may be assessed, each sample question is accompanied by the competency that it measures. While studying, you may wish to read the competency before and after you consider each sample question. Please note that the competency statements do not appear on the actual test.

For each sample test question, there is at least one correct answer and a rationale for each answer option. Please note that the sample questions are not necessarily presented in competency order.

The sample questions are included to illustrate the formats and types of questions you will see on the test; however, your performance on the sample questions should not be viewed as a predictor of your performance on the actual test.
Definitions and Formulas for Mathematics 4–8

CALCULUS

First Derivative: \[f'(x) = \frac{dy}{dx} \]

Second Derivative: \[f''(x) = \frac{d^2y}{dx^2} \]

PROBABILITY

\[P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B) \]
\[P(A \text{ and } B) = P(A)P(B|A) = P(B)P(A|B) \]

ALGEBRA

\[i \]
\[i^2 = -1 \]
\[A^{-1} \text{ inverse of matrix } A \]
\[A = P(1 + \frac{r}{n})^nt \]
- Compound interest, where
 - \(A \) is the final value
 - \(P \) is the principal
 - \(r \) is the interest rate
 - \(t \) is the term
 - \(n \) is the number of divisions within the term

\[\lfloor x \rfloor = n \]
- Greatest integer function, where \(n \) is the integer such that \(n \leq x < n + 1 \)

GEOMETRY

Congruent Angles

Congruent Sides

Parallel Sides

\[C = 2\pi r \]
- Circumference of a Circle

VOLUME

Cylinder:
(area of base) \(\times \) height

Cone:
\[\frac{1}{3} \text{ (area of base)} \times \text{ height} \]

Sphere:
\[\frac{4}{3} \pi r^3 \]

Prism:
(area of base) \(\times \) height

AREA

Triangle:
\[\frac{1}{2} \text{ (base} \times \text{ height)} \]

Rhombus:
\[\frac{1}{2} \text{ (diagonal}_1 \times \text{ diagonal}_2) \]

Trapezoid:
\[\frac{1}{2} \text{ height} (\text{base}_1 + \text{base}_2) \]

Sphere:
\[4\pi r^2 \]

Circle:
\[\pi r^2 \]

Lateral surface area of cylinder:
\[2\pi rh \]

TRIGONOMETRY

Law of Sines:
\[\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} \]

Law of Cosines:
\[a^2 = b^2 + c^2 - 2bc \cos A \]
\[b^2 = a^2 + c^2 - 2ac \cos B \]
\[c^2 = a^2 + b^2 - 2ab \cos C \]

END OF DEFINITIONS AND FORMULAS
COMPETENCY 001

1. Which of the following right triangles has a hypotenuse with a length that is an irrational number?
 A. A right triangle with leg lengths of 4 and 3
 B. A right triangle with leg lengths of 12 and 5
 C. A right triangle with leg lengths of 24 and 7
 D. A right triangle with leg lengths of 25 and 9

Answer and Rationale

COMPETENCY 002

2. Rectangle I has dimensions \(a\) and \(b\), and rectangle II has dimensions \(2a - 2\) and \(b + 2\), where \(a > 2\). Which of the following must be true?
 A. The area of rectangle I is less than the area of rectangle II.
 B. The area of rectangle I is greater than the area of rectangle II.
 C. The perimeter of rectangle I is less than the perimeter of rectangle II.
 D. The perimeter of rectangle I is equal to the perimeter of rectangle II.

Answer and Rationale

COMPETENCY 002

3. Which of the following is equivalent to the product \((3 + 2i)(4 + 3i)\)?
 A. \(6 + 17i\)
 B. \(12 + 6i\)
 C. \(18 + 17i\)
 D. \(12 + 17i\)

Answer and Rationale
COMPETENCY 003

4. A traveler in Europe noticed on a certain day that 3.85 euros was worth 5.00 United States dollars. Based on this rate of exchange, 10 euros is approximately equal to how many United States dollars?

A. 7.70
B. 9.25
C. 10.77
D. 12.99

Answer and Rationale

COMPETENCY 004

5. An amount of 10 gallons of water is stored in a 15-gallon container. During the first 4 hours, the water evaporates from the container at a rate of 0.1 gallons per hour. During the next 5 hours, the water evaporates from the container at a rate of 0.3 gallons per hour. Which of the following functions represents the volume of water in the container, at time t, where $0 \leq t \leq 9$?

A. $f(t) = 10 - 0.4t$ \hspace{1cm} 0 \leq t \leq 9
B. $f(t) = 9.6 - 0.3t$ \hspace{1cm} 0 \leq t \leq 9
C. $f(t) = \begin{cases} 10 - 0.1t & 0 \leq t \leq 4 \\ 9.6 - 0.3t & 4 < t \leq 9 \end{cases}$
D. $f(t) = \begin{cases} 15 - 0.1t & 0 \leq t \leq 4 \\ 10 - 0.4t & 4 < t \leq 9 \end{cases}$

Answer and Rationale
COMPETENCY 004

6. Each week last year, a small manufacturer earned a profit by selling handbags. The weekly profit P from selling x handbags is modeled by the function $P(x) = -0.5x^2 + 40x - 300$. Based on the model, what was the maximum weekly profit, in dollars, that the manufacturer could have earned last year?

A. $300
B. $450
C. $500
D. $700

Answer and Rationale

COMPETENCY 005

7. Which of the following is the equation of the line in the xy-plane that passes through the points $(-7, -2)$ and $(-2, -7)$?

A. $x + y = -9
B. $x - y = -9
C. $x - y = -5
D. $-x + y = -5

Answer and Rationale

COMPETENCY 005

8. In the xy-plane, line segment AB is bisected by line segment CD, and the coordinates of the point of intersection are $(-2, -3)$. If the coordinates of A are $(-8, -1)$, what are the coordinates of point B?

A. $(5, -5)
B. $(4, -5)
C. $(-5, -2)
D. $(8, 1)$

Answer and Rationale
COMPETENCY 006

9. Which of the following points is the vertex of the graph of \(y = 2x^2 - 8x + 1 \) in the \(xy \)-plane?

A. \((2, 13)\)
B. \((0, 1)\)
C. \((4, 1)\)
D. \((2, -7)\)

Answer and Rationale

COMPETENCY 006

10. Which of the following values of \(x \) satisfies \(2x^2 + 5x - 3 < 0 \) ?

A. \(-3\)
B. \(\frac{1}{3}\)
C. \(\frac{1}{2}\)
D. 2

Answer and Rationale
11. An eighth-grade geometry teacher developed a lesson to introduce a concept from calculus. The lesson incorporates solving linear equations using algebra and finding the area of geometric shapes using geometry. Which of the following calculus topics could be demonstrated by finding the area of the trapezoid above?

A. The derivative of a function at a point
B. The definite integral
C. The limit of a function of x as x goes to infinity
D. Newton’s method to find the zeros of a function

Answer and Rationale
12. At a certain time of day, a student measured the height of the shadow of a yardstick, held vertically, to be 5 feet. At the same time of day, the student measured the length of the shadow of the tree to be 26 feet. To the nearest foot, what is the height of the tree?

A. 16 feet
B. 24 feet
C. 30 feet
D. 43 feet

Answer and Rationale
13. In the diagram above, ℓ_1 is parallel to ℓ_2. If the measure of angle b is 100°, what is the measure of angle e?

A. 100°
B. 95°
C. 80°
D. 75°

Answer and Rationale
COMPETENCY 009

Use the figure below to answer the question that follows.

14. Which of the following describes the geometric construction above, where the construction uses only a compass and a straightedge?

A. The locus of points that are equidistant from line \(\ell \) and point \(P \)
B. The line perpendicular to line \(\ell \) and passing through point \(P \)
C. The perpendicular bisector of line \(\ell \)
D. The line parallel to line \(\ell \) and passing through point \(P \)

Answer and Rationale

COMPETENCY 009

15. Let \(ABC \) be a triangle, where \(AB \) has length 4 and \(BC \) has length 8. For which of the following possible lengths of \(AC \) is \(ABC \) an obtuse triangle?

Select all that apply.

A. 6
B. 7
C. 8
D. 9
E. 10

Answer and Rationale
16. Equilateral triangle ABC is inscribed in a circle with center O and a radius of 1, as shown above. The height of the triangle is BD. What is the area of triangle ABC?

A. $\frac{\sqrt{3}}{2}$
B. $\frac{\sqrt{3}}{8}$
C. $\frac{3\sqrt{3}}{2}$
D. $\frac{3\sqrt{3}}{4}$

Answer and Rationale
17. In the cube shown above, a student measured the length of a diagonal to be 4.5 centimeters. Which of the following is the best estimate of the volume of the cube?

A. 121.5 cubic centimeters
B. 91.1 cubic centimeters
C. 17.5 cubic centimeters
D. 2.6 cubic centimeters

Answer and Rationale
COMPETENCY 011

Use the figure below to answer the question that follows.

![Diagram of triangle ABC with coordinates A(2, 8), B(14, 8), and C(14, 3)]

18. Triangle $A'B'C'$ has a hypotenuse of length 52 and is a dilation of triangle ABC shown above. What is the scale factor used to dilate triangle ABC to transform it to triangle $A'B'C'$?

A. $\frac{1}{4}$
B. $\frac{4}{13}$
C. $\frac{13}{4}$
D. 4

Answer and Rationale

COMPETENCY 012

Use the list below to answer the question that follows.

90, 70, 60, 75, 80, 82, 85, 88, 80, x

19. The list above shows ten scores from a recent test in a math class. The range of the ten scores is 30, and the interquartile range is 10. Which of the following could be the value of x?

A. 74
B. 84
C. 86
D. 96

Answer and Rationale
COMPETENCY 012

Use the circle graph below to answer the question that follows.

20. Ms. Jefferson read an article to her class describing a survey of students who were asked to choose their favorite color among the colors yellow, blue, green, and red. The graph above shows the results of the survey. Ms. Jefferson tells the class that the survey results are representative of all students, and she asks the class to predict how many of the 850 students in their school would choose either yellow or green. Which of the following is the best estimate?

A. 20
B. 25
C. 200
D. 250

Answer and Rationale

COMPETENCY 012

21. The height of each student at Jefferson Middle School was measured and recorded. Joseph was told that his height was at the 60th percentile of the heights of the students. Which of the following must be true?

A. The heights of 4 students are greater than Joseph’s height.
B. Joseph’s height is 60 inches.
C. The heights of at least 60 percent of the students are less than or equal to Joseph’s height.
D. If the height of the tallest student is 70 inches, then Joseph’s height is $(0.6)(70) = 48$ inches.

Answer and Rationale
COMPETENCY 013

22. To form a committee, a principal will choose 3 students from a group of 5 seventh-grade students and 2 students from a group of 6 eighth-grade students. What is the total number of different committees the principal could select?

A. 16
B. 150
C. 180
D. 720

Answer and Rationale

COMPETENCY 013

23. Six swimmers are competing in a 25-meter race. If there are no ties, how many different combinations are possible for a first-, second-, and third-place finish?

A. 216
B. 120
C. 18
D. 15

Answer and Rationale
24. Every hour, a scientist counted the number of bacteria growing in a certain medium. The scientist recorded the results in a table and produced the scatterplot shown above. If \(P(t) \) is a mathematical model for the number of bacteria, in thousands, at time \(t \) hours, which of the following expressions is the best fit for \(P(t) \)?

A. \(P(t) = 300t + 10 \)
B. \(P(t) = 300t^2 + 100t + 10 \)
C. \(P(t) = 10(2^t) \)
D. \(P(t) = 10(ln(2t + 1)) \)

Answer and Rationale
Given: In triangle ABC shown, $AB > BC$
Prove: $\angle A \neq \angle C$

Proof by contradiction: assume that $\angle A \cong \angle C$.

If $\angle A \cong \angle C$, then $\overline{AB} \cong \overline{AC}$ by the converse of the _________________.
However, this theorem contradicts the given information that $AB > BC$. Therefore, the assumption that $\angle A \cong \angle C$ must be false, and so $\angle A \neq \angle C$.

25. In the proof above, which of the following theorems correctly fills in the blank?

A. corresponding angles theorem
B. angle bisector theorem
C. isosceles triangle theorem
D. Pythagorean theorem

Answer and Rationale
COMPETENCY 015

Use the figure and the proof below to answer the question that follows.

\[\frac{p}{a} = \frac{a}{c} \text{ and } \frac{q}{b} = \frac{b}{c} \]

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{p}{a} = \frac{a}{c}) and (\frac{q}{b} = \frac{b}{c})</td>
<td>1. ?</td>
</tr>
<tr>
<td>(p = \frac{a^2}{c}) and (q = \frac{b^2}{c})</td>
<td>2. Multiplication property of equality</td>
</tr>
<tr>
<td>(c = p + q = \frac{a^2}{c} + \frac{b^2}{c})</td>
<td>3. Substitution</td>
</tr>
<tr>
<td>(c^2 = a^2 + b^2)</td>
<td>4. Multiplication property of equality</td>
</tr>
</tbody>
</table>

26. A seventh-grade mathematics teacher presented the proof of the Pythagorean theorem shown above, with one missing reason for students to supply. What is the missing reason?

A. Triangles \(CDB \) and \(BDA \) are similar
B. Apply the angle-side-angle theorem to triangle \(BDA \).
C. Apply the side-angle-side theorem to triangle \(CBA \).
D. Triangles \(CBA \) and \(CDB \) are similar, and triangles \(CBA \) and \(BDA \) are similar.

Answer and Rationale
COMPETENCY 016

27. A teacher would like to instruct students about semiregular tessellations of a plane. A semiregular tessellation of a plane uses more than one type of regular polygon. Also, every vertex in the tessellation has the same arrangement of polygons around it, where the sum of the angles around the vertex is 360°. The teacher proposes a tessellation that uses three types of regular polygons: a 15-gon, a triangle, and a third type. What is the third type of regular polygon?

A. A pentagon
B. A hexagon
C. An octagon
D. A decagon

Answer and Rationale
COMPETENCY 016

Use the student work below to answer the question that follows.

Student Work

Using the figure below, determine if the following statement is true or false, and explain your reasoning.

Statement: $m\angle C < m\angle F$

True or False: Why? Because $\triangle DEF$ is bigger and \overline{DE} is longer than \overline{AB}.

28. Which of the following is the most appropriate way for a mathematics teacher to respond to the student work shown?

A. The student’s work is correct.
B. The student’s calculations are correct, but the teacher should ask the student to use the proper terms, rather than the words “bigger” and “longer.”
C. The student’s work is incorrect because the angle measures are not given and cannot be determined from the information provided.
D. The student’s work is incorrect because the triangles are similar; therefore, $m\angle C = m\angle F$.

Answer and Rationale
29. A teacher is preparing a unit on polynomial long division and would like to use the problem shown above as an example. Before discussing the example, which of the following concepts is best for the teacher to review?

A. Multiplying two rational expressions
B. Factoring polynomials
C. The additive property of equality
D. The division algorithm for real numbers

Answer and Rationale

30. Marcus is renting a bicycle. The rental requires a down payment of $15 plus $6 for each hour the bicycle is rented. If C is the total charge and t is the number of hours that Marcus rented the bicycle, which of the following equations represents the relationship between the amount of time he rented the bicycle and the total cost?

A. $C = \frac{1}{6}t + 15$
B. $C = 6t + 15$
C. $C = 15t + 6$
D. $C = 15(t - 1) + 6$

Answer and Rationale
COMPETENCY 018

31. A mathematics teacher assigns students in a sixth-grade class to keep a mathematics diary. Every day, the students are asked to record when and how they use mathematics in their daily lives. At the end of each week, the students each write a short report on their use of mathematics, and the teacher reviews their diaries. Which of the following is the teacher demonstrating with this activity?

A. An understanding of a variety of questioning strategies to encourage mathematical discourse and to help students analyze, evaluate, and communicate their mathematical thinking
B. An understanding of the use of inductive reasoning to make conjectures and deductive methods to evaluate the validity of conjectures
C. An understanding of the purpose, characteristics, and uses of summative assessments
D. An understanding of how technological tools and manipulatives can be used appropriately to assist students in developing, comprehending, and applying mathematical concepts

Answer and Rationale

COMPETENCY 019

32. A mathematics teacher finished a unit on adding fractions and gave a formative assessment. While grading the assessment, the teacher found that more than half of the students were making the error \(\frac{a}{b} + \frac{c}{d} = \frac{a + c}{b + d} \). Which of the following is the best way for the teacher to address this error?

A. Reviewing fraction addition and give another formative assessment with questions designed to determine common errors among the students
B. Moving to the next section in the text and include questions on fraction addition on the summative review at the end of the semester
C. Asking the students to perform a search of newspapers and Web sites and document how fractions are used in news stories
D. Moving to the next section in the text and assign extra credit homework on fraction addition

Answer and Rationale
Rationales

<table>
<thead>
<tr>
<th>Question Number</th>
<th>Competency Number</th>
<th>Correct Answer</th>
<th>Rationales</th>
</tr>
</thead>
</table>
| 1 | 001 | D | **Option D is correct** because the length of the hypotenuse of a right triangle is given by the square root of the sum of the squares of the legs, and \(\sqrt{25^2 + 9^2} = \sqrt{625 + 81} = \sqrt{706} \), which is an irrational number.
Option A is incorrect because \(\sqrt{4^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \), which is a rational number.
Option B is incorrect because \(\sqrt{12^2 + 5^2} = \sqrt{144 + 25} = \sqrt{169} = 13 \), which is a rational number.
Option C is incorrect because \(\sqrt{24^2 + 7^2} = \sqrt{576 + 49} = \sqrt{625} = 25 \), which is a rational number. |

Back to Question
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Competency Number</th>
<th>Correct Answer</th>
<th>Rationales</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>002</td>
<td>D</td>
<td>Option D is correct because the perimeters of rectangles I and II are $2a + 2b$ and $2(a - 2) + 2(b + 2) = 2a - 4 + 2b + 4 = 2a + 2b$ respectively, which are equal. Option A is incorrect because in the case $a - b < 2$, the area of rectangle II is $(a - 2)(b + 2) = ab + 2a - 2b - 4 = ab + 2(a - b) - 4$, which is less than $ab + (2)(2) - 4 = ab$, that is, less than the area of rectangle I. Option B is incorrect because in the case of $a - b > 2$, the area of rectangle II is $(a - 2)(b + 2) = ab + 2a - 2b - 4 = ab + 2(a - b) - 4$, which is greater than $ab + (2)(2) - 4 = ab$, that is, greater than the area of rectangle I. Note that if $a - b = 2$, then the area of rectangles I and II are equal. Option C is incorrect because it contradicts option D, which is true.</td>
</tr>
</tbody>
</table>

Back to Question
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Competency Number</th>
<th>Correct Answer</th>
<th>Rationales</th>
</tr>
</thead>
</table>
| 3 | 002 | A | **Option A is correct** because when the product is properly distributed, the result is $12 + 8i + 9i + 6i^2 = 12 + 17i - 6 = 6 + 17i$.

Option B is incorrect because this answer results when the two binomials are not distributed properly during multiplication. **Option C is incorrect** because this answer results from misinterpreting i^2 as equivalent to 1 instead of -1.

Option D is incorrect because this answer results from neglecting to add in the term $6i^2$.

Back to Question
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Competency Number</th>
<th>Correct Answer</th>
<th>Rationales</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>003</td>
<td>D</td>
<td>Option D is correct because the given numbers of dollars, (d), and euros, (e), can be related by the equation (d = ke), where (k = \frac{5}{3.85} \approx 1.299) is the rate of exchange in dollars per euro. Using the rate (k) when (e = 10) yields (d \approx 12.99). Option A is incorrect because this response results from using an incorrect rate of exchange, (\frac{3.85}{5} = 0.77) euro per dollar, misapplied to 10 euros. Option B is incorrect because this response corresponds to multiplying (d) and (e) and then subtracting 10: ((5)(3.85) - 10). Option C is incorrect because this response corresponds to dividing (e) by (d) and then adding 10: (\frac{3.85}{5} + 10).</td>
</tr>
<tr>
<td>5</td>
<td>004</td>
<td>C</td>
<td>Option C is correct because water evaporates at a rate of 0.1 gallon per hour during the first 4 hours. After 4 hours, there are (10 - (0.1)(4) = 9.6) gallons left. For the next 5 hours, the rate of evaporation is 0.3 gallon per hour. Option A is incorrect because the rate of evaporation is not a constant 0.4 gallon per hour. Option B is incorrect because the initial amount is 10 gallons of water, and the rate of evaporation is not 0.3 gallon per hour. Option D is incorrect because the initial amount is 10 gallons of water, not 15.</td>
</tr>
<tr>
<td>Question Number</td>
<td>Competency Number</td>
<td>Correct Answer</td>
<td>Rationales</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>6</td>
<td>004</td>
<td>C</td>
<td>Option C is correct because the given function is quadratic, and therefore, its graph is a parabola that opens downward. The maximum possible weekly profit is the value of the function at the vertex of the parabola. The x-coordinate of the vertex can be found using the formula $x = -\frac{b}{2a} = -\frac{40}{2(-0.5)} = 40$, where a and b are the coefficients of the x^2 term and the x term, respectively. Substituting $x = 40$ in the function gives the value $P(40) = 500$ at the vertex. Therefore, the maximum possible profit is 500. Option A is incorrect because it corresponds to an x-coordinate of $x = \frac{b}{2} = \frac{40}{2} = 20$ at the vertex, whereby the value would be $P(20) = 300$. Option B is incorrect because it corresponds to an x-coordinate of $x = 30$ at the vertex, whereby the value would be $P(30) = 450$. Option D is incorrect because it corresponds to an x-coordinate of $x = 20$ at the vertex and a subsequent computation of the value using the incorrect function $P(x) = 0.5x^2 + 40x - 300$, whereby the value would be $P(20) = 700$.</td>
</tr>
<tr>
<td>Question Number</td>
<td>Competency Number</td>
<td>Correct Answer</td>
<td>Rationales</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>7</td>
<td>005</td>
<td>A</td>
<td>Option A is correct because the values ((x, y)) of both of the ordered pairs satisfy the equation; that is, the graph of the equation passes through the points in the (xy)-plane. Option B is incorrect because neither of the ordered pairs satisfies the equation; that is, the graph of the equation does not pass through either point in the (xy)-plane. Option C is incorrect because the values ((-2, -7)) do not satisfy the equation; that is, the graph of the equation does not pass through that point in the (xy)-plane. Option D is incorrect because the values ((-7, -2)) do not satisfy the equation; that is, the graph of the equation does not pass through that point in the (xy)-plane.</td>
</tr>
</tbody>
</table>

Back to Question
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Competency Number</th>
<th>Correct Answer</th>
<th>Rationales</th>
</tr>
</thead>
</table>
| 8 | 005 | B | **Option B is correct** because \((-2, -3)\) is the midpoint of segment \(AB\), meaning that point \(B\) must lie on the line that connects the two points \((-2, -3)\) and \((-8, -1)\), and the distance from \(B\) to \((-2, -3)\) is the same as the distance from \(A\) to \((-2, -3)\). The line \(y = \frac{1}{3}x - \frac{11}{3}\) is the line that contains \(A\) and \((-2, -3)\), and thus also contains \(B\). The distance between the point \(A\), and \((-2, -3)\) is \(2\sqrt{10}\). The equation of the set of points that lies at a distance of \(2\sqrt{10}\) from \((-2, -3)\) is
\[(x + 2)^2 + (y + 3)^2 = 40.\] Solving the system of equations, \(y = \frac{1}{3}x - \frac{11}{3}\) and \((x + 2)^2 + (y + 3)^2 = 40\), produces the solutions \((4, -5)\) and \((-8, -1)\). **Options A, C and D are incorrect** because they do not lie the same distance from \((-2, -3)\) as \((-8, -1)\). |

Back to Question
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Competency Number</th>
<th>Correct Answer</th>
<th>Rationales</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>006</td>
<td>D</td>
<td>Option D is correct because the vertex form of a parabola is $y = a(x - h)^2 + k$ where the coordinates of the vertex are (h, k). The equation can be rewritten as $y = 2(x - 2)^2 - 7$; therefore, the vertex of the graph is the point $(2, -7)$. Options A, B and C are incorrect because they result in mistakes in calculation of the vertex form of the equation.</td>
</tr>
<tr>
<td>10</td>
<td>006</td>
<td>B</td>
<td>Option B is correct. The function $f(x) = 2x^2 + 5x - 3$ is equal to zero when $x = -3$ or $x = \frac{1}{2}$. The value of f is less than zero for all x such that $-3 < x < \frac{1}{2}$. Of the options listed, only $\frac{1}{3}$ is greater than -3 and less than $\frac{1}{2}$. Options A and C are incorrect because $f(x) = 0$ when $x = -3$ or $x = \frac{1}{2}$. Option D is incorrect because $f(x) > 0$ when $x = 2$.</td>
</tr>
</tbody>
</table>

Back to Question
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Competency Number</th>
<th>Correct Answer</th>
<th>Rationales</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>007</td>
<td>B</td>
<td>Option B is correct because the definite integral is the area of the region in the xy-plane between the x-axis and the graph of a function over a given interval, where the region in this case is a trapezoid. Option A is incorrect because the derivative of a function at a point is the instantaneous rate of change of the function at the given point. Option C is incorrect because the limit of a function as x goes to infinity, if it exists, is a value L that the functional values of $f(x)$ are arbitrarily close to as x is arbitrarily large. Option D is incorrect because Newton’s method is used to find the zero of a function and not the area.</td>
</tr>
</tbody>
</table>

Back to Question
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Competency Number</th>
<th>Correct Answer</th>
<th>Rationales</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>008</td>
<td>A</td>
<td>Option A is correct because a line drawn from the top of the yardstick to the end of the shadow forms the same angle as a line drawn from the top of the tree to the end of its shadow. Therefore, these two triangles are similar by angle-angle-angle similarity. One of the proportions that follows from similarity is $\frac{3}{5} = \frac{h}{26}$, where h is the height of the tree. Solving for h yields $h = 15.6$, which, rounded to the nearest foot, is approximately 16 feet. Option B is incorrect because it is erroneously obtained from $26 - 5 = 21$ and $21 + 3 = 24$. Option C is incorrect because it results from finding the hypotenuse of the larger triangle: $\sqrt{15.6^2 + 26^2} \approx 30$. Option D is incorrect because it results from the incorrect proportion $\frac{3}{5} = \frac{26}{h}$.</td>
</tr>
<tr>
<td>13</td>
<td>009</td>
<td>C</td>
<td>Option C is correct. Based on the figure, angles a and b are supplementary, so the sum of their measures is 180°. Since the measure of angle b is 100°, the measure of angle a is 80°. Because ℓ_1 and ℓ_2 are parallel lines cut by a transversal, corresponding angles are congruent and the measures are equal. Therefore, the measure of angle a is equal to the measure of angle e, and the measure of angle e is thus also 80°. Options A, B and D are incorrect because the measure of angle e is 80°.</td>
</tr>
<tr>
<td>Question Number</td>
<td>Competency Number</td>
<td>Correct Answer</td>
<td>Rationales</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>14</td>
<td>009</td>
<td>B</td>
<td>Option B is correct because the arcs that intersect line ℓ at two points, call them A and B, appear to be part of a circle centered at point P, and the two other arcs that intersect each other at a point, call it C, appear to be from two circles centered at A and B with equal radii. If A, B, and C are constructed with a compass as they appear to be, then $PA = PB$ and $CA = CB$. The line passing through points P and C is then drawn with a straightedge, intersecting ℓ at a point, call it D, and the two equalities yield two congruent triangles, APC and BPC. From this congruence, it follows that triangles APD and BPD are congruent. Finally, it follows that the four angles at D are right angles, and line PC is a line that is perpendicular to ℓ and passes through P. Option A is incorrect because the locus of points equidistant from a line and a point that is not on the line is a parabola, which does not appear in the figure. Option C is incorrect because a line, which is infinite in extent, cannot be bisected. Option D is incorrect because there are no parallel lines in the figure.</td>
</tr>
</tbody>
</table>

Back to Question
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Competency Number</th>
<th>Correct Answer</th>
<th>Rationales</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>009</td>
<td>A, D, E</td>
<td>Options A, D and E are correct because a triangle has an obtuse angle if, and only if, the square of the longest length is greater than the sum of the squares of the two shorter lengths. This is true because when “greater than” is replaced by “equal to,” the triangle is a right triangle, using the Pythagorean theorem. The inequalities for options A, D and E are $8^2 > 4^2 + 6^2$, $9^2 > 4^2 + 8^2$, and $10^2 > 4^2 + 8^2$, respectively. Option B is incorrect because $8^2 < 4^2 + 7^2$. Option C is incorrect because $8^2 < 4^2 + 8^2$.</td>
</tr>
</tbody>
</table>

Back to Question
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Competency Number</th>
<th>Correct Answer</th>
<th>Rationales</th>
</tr>
</thead>
</table>
| 16 | 010 | D | **Option D is correct** because the area of a triangle is $\frac{1}{2}bh$, where b is the base and h is the height. In the triangle shown, AC is the base and BD is the height. Since triangle ABC is an equilateral triangle, angles A, B and C all have measures of 60°. The radius OC bisects angle BCA, so the measure of angle OCD is 30°. Thus, triangle OCD is a 30-60-90 triangle, and the length of OC is 1 because OC is a radius of the circle centered at O.

Therefore, the length of OD is $\frac{1}{2}$ and the length of DC is $\frac{\sqrt{3}}{2}$. Thus, the length of AC, the base of the triangle, is $(2)\left(\frac{\sqrt{3}}{2}\right) = \sqrt{3}$, the length of BD, the height, is $1 + \frac{1}{2} = \frac{3}{2}$, and the area is $\left(\frac{1}{2}\right)\left(\sqrt{3}\right)\left(\frac{3}{2}\right) = \frac{3\sqrt{3}}{4}$.

Options A, B and C are incorrect because they are not areas of the triangle ABC. |
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Competency Number</th>
<th>Correct Answer</th>
<th>Rationales</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>010</td>
<td>C</td>
<td>Option C is correct because the volume V of a cube with edges of length s is s^3. The diagonal has length $4.5 = \sqrt{3s^2}$, and therefore, $s = \frac{4.5}{\sqrt{3}}$. Therefore, $V = \left(\frac{4.5}{\sqrt{3}}\right)^3 \approx 17.5$. Option A is incorrect because it is the surface area of the cube, where 4.5 is the length of an edge. Option B is incorrect because it is approximately the volume of the cube, where the length of an edge is 4.5. Option D is incorrect because it is approximately the length of an edge of the cube.</td>
</tr>
<tr>
<td>18</td>
<td>011</td>
<td>D</td>
<td>Option D is correct because, using the Pythagorean theorem, the hypotenuse of triangle ABC is 13, and since the hypotenuse of $A'B'C'$ is 52, it follows that triangle ABC has been dilated by a factor of $\frac{52}{13}$, or 4. Option A is incorrect because it is equal to the reciprocal of $\frac{52}{13}$. Option B is incorrect because it assumes that the hypotenuse of triangle ABC is 13^2, or 169, in which case the dilation factor would be $\frac{52}{169}$, or $\frac{4}{13}$. Option C is incorrect because it assumes that the hypotenuse of triangle ABC is 13^2, or 169, and then uses the reciprocal of what would be the dilation factor, that is, the reciprocal of $\frac{52}{169}$, or $\frac{13}{4}$.</td>
</tr>
<tr>
<td>Question Number</td>
<td>Competency Number</td>
<td>Correct Answer</td>
<td>Rationales</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>19</td>
<td>012</td>
<td>B</td>
<td>Option B is correct. The range of the numbers in a data set is the difference between the greatest number and the least number in the data set. The quartiles are obtained by ordering the data from the least value to the greatest value and then dividing the data into four equal groups. The interquartile range is the difference between the third quartile and the first quartile. Using the value of 84 from option B and ordering the list from least to greatest—60, 70, 75, 80, 80, 82, 84, 85, 88, 90—the range is 90 – 60 = 30, the first quartile is 75, the third quartile is 85, and the interquartile range is 85 – 75 = 10. Option A is incorrect because using the value of 74 from option A and ordering the list from least to greatest—60, 70, 74, 75, 80, 80, 82, 85, 88, 90—the range is 90 – 60 = 30, the first quartile is 74, and the third quartile is 85, so the interquartile range is 85 – 74 = 11. Option C is incorrect because using the value of 86 from option C and ordering the list from least to greatest—60, 70, 75, 80, 80, 82, 84, 85, 86, 88, 90—the range is 90 – 60 = 30, the first quartile is 75, and the third quartile is 86, so the interquartile range is 86 – 75 = 11. Option D is incorrect because using the value of 96 from Option D and ordering the list from least to greatest—60, 70, 80, 80, 82, 84, 85, 88, 90, 96—the range is 96 – 60 = 36.</td>
</tr>
</tbody>
</table>

Back to Question
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Competency Number</th>
<th>Correct Answer</th>
<th>Rationales</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>012</td>
<td>D</td>
<td>Option D is correct because the sectors in the circle graph can be estimated as follows. The sector for blue has a central angle that is very close to a right angle, which is about 25% of the circle, and the sector for red is somewhat less than half the circle, perhaps about 45% of the circle. Thus, blue and red together constitute about $25% + 45%$, or 70%, of the data. It follows that yellow and green together constitute about 30% of 850, or 255 students. Among the options, 250 is closest to 255. Option A is incorrect because it is at least one order of magnitude less than the estimate given in option D. Option B is incorrect because it is at least one order of magnitude less than the estimate given in option D. Option C is incorrect because the estimate of 200 is about 24% of 850; therefore, if blue is about 25% of the data, then red could be greater than 50% of the data, which would contradict the graph.</td>
</tr>
</tbody>
</table>

Back to Question
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Competency Number</th>
<th>Correct Answer</th>
<th>Rationales</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>012</td>
<td>C</td>
<td>Option C is correct because a percentile is a measure used in statistics that indicates the value below which a given percent of observations in a group of observations fall. Joseph’s height at the 60th percentile of the heights of students means that the heights of at least 60 percent of the students are less than or equal to Joseph’s height. Option A is incorrect because the total number of students is not given. Option B is incorrect because none of the heights is given. Option D is incorrect because being at the 60th percentile of the heights measured does not mean that Joseph’s height is 60 percent of the height of the tallest student.</td>
</tr>
<tr>
<td>22</td>
<td>013</td>
<td>B</td>
<td>Option B is correct because the number of combinations of (n) objects taken (k) at a time is given by the formula (\binom{n}{k} = \frac{n!}{k!(n-k)!}). If the principal chooses 3 students from a group of 5 seventh-grade students and 2 students from a group of 6 eighth-grade students, the number of possible different committees is (\binom{5}{3} \binom{6}{2} = \frac{5!}{3!2!} = \frac{6!}{2!4!} = \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(3 \cdot 2 \cdot 1)(2 \cdot 1)} \frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(2 \cdot 1)(4 \cdot 3 \cdot 2 \cdot 1)} = \frac{10 \cdot 15 \cdot 150}{150} = 150. Options A, C and D are incorrect because the calculations are not correct.</td>
</tr>
<tr>
<td>Question Number</td>
<td>Competency Number</td>
<td>Correct Answer</td>
<td>Rationales</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>23</td>
<td>013</td>
<td>B</td>
<td>Option B is correct because any one of the 6 swimmers has the possibility of finishing first, which leaves 5 possible second-place finishers and 4 possible third-place finishers. Using the multiplication rule, there are $6 \times 5 \times 4 = 120$ possible combinations. Option A is incorrect because this is the result of 6^3, which does not take into consideration that the swimmer who finishes first cannot finish second or third, and the swimmer who finishes second cannot finish third. Option C is incorrect because this is the result of 6×3. Option D is incorrect because this is the result of $6 + 5 + 4$.</td>
</tr>
<tr>
<td>24</td>
<td>014</td>
<td>C</td>
<td>Option C is correct. Based on the scatterplot, an exponential function is the best model for the data shown. Evaluation of $P(t) = 10(2^t)$ for values of $t \geq 0$ shows that this function produces values close to the data recorded. Option A is incorrect because the data shown in the scatterplot are not linear. Option B is incorrect because a parabola is not the best fit for the data shown in the scatterplot. Option D is incorrect because a logarithmic function is not the best fit for the data shown.</td>
</tr>
<tr>
<td>Question Number</td>
<td>Competency Number</td>
<td>Correct Answer</td>
<td>Rationales</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>25</td>
<td>015</td>
<td>C</td>
<td>Option C is correct because the converse of the isosceles-triangle theorem is the statement that if two angles of a triangle are congruent, then the sides opposite the two angles are congruent. Option A is incorrect because the corresponding-angles theorem involves two parallel lines and a transversal. Option B is incorrect because the angle-bisector theorem involves an angle that is bisected. Option D is incorrect because the Pythagorean theorem involves the lengths of the sides of a right triangle.</td>
</tr>
<tr>
<td>26</td>
<td>015</td>
<td>D</td>
<td>Option D is correct because the similarity of triangle CBA and CDB implies that the lengths of their corresponding sides have the same ratio, yielding $\frac{p}{a} = \frac{a}{c}$. Similarly, the similarity of triangles CBA and BDA yields $\frac{q}{b} = \frac{b}{c}$. Option A is incorrect because although it is true that triangles CDB and BDA are similar, c is not equal to any of the lengths of the sides of these triangles. Options B and C are incorrect because the angle-side-angle and side-angle-side theorems refer to the congruence of triangles.</td>
</tr>
<tr>
<td>Question Number</td>
<td>Competency Number</td>
<td>Correct Answer</td>
<td>Rationales</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>27</td>
<td>016</td>
<td>D</td>
<td>Option D is correct because the measure of an interior angle of a regular 15-gon is (\frac{(15 - 2)(180^\circ)}{15}), or 156°, and when 156° is added to the 60° measure of an interior angle of an equilateral triangle yields 216°, which is 144° less than 360°. The equation (\frac{(n - 2)(180^\circ)}{n} = 144^\circ) can be used to determine that (n = 10), and therefore, the third type of polygon is a decagon. Option A is incorrect because an interior angle of a regular pentagon measures 108°, not 144°. Option B is incorrect because an interior angle of a regular hexagon measures 120°, not 144°. Option C is incorrect because an interior angle of a regular octagon measures 135°, not 144°.</td>
</tr>
</tbody>
</table>

| 28 | 016 | D | **Option D is correct** because the two triangles are similar since the corresponding sides have the same ratio; therefore, the corresponding angles must be congruent. **Options A and B are incorrect** because \(\angle C \) and \(\angle F \) are, in fact, congruent, so their measures are equal. **Option C is incorrect** because although the student’s work is not correct and the angle measures are not given, the angle measures can, in fact, be determined from the information given using inverse trigonometric functions; for example, \(m\angle C = \arcsin \left(\frac{3}{5} \right) \). |

Back to Question
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Competency Number</th>
<th>Correct Answer</th>
<th>Rationales</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>017</td>
<td>D</td>
<td>Option D is correct because the division algorithm for real numbers should be familiar to the students. The same algorithm is used in polynomial long division. Option A is incorrect because the multiplication of rational expressions is not needed in polynomial long division. Option B is incorrect because factoring polynomials is a useful skill for reducing a rational expression to its lowest terms but is not necessary in polynomial long division. Option C is incorrect because the additive property of equality is useful for solving equations for a variable but is not necessary in polynomial long division.</td>
</tr>
<tr>
<td>30</td>
<td>018</td>
<td>B</td>
<td>Option B is correct because in order to compute the total cost for (t) hours, the price per hour must be multiplied by the number of hours and added to the down payment, resulting in (C = 6t + 15). Option A is incorrect because the cost per hour in this model would be (\frac{1}{6}) rather than $6. Options C and D are incorrect because the cost per hour in this model would be $15 rather than $6.</td>
</tr>
<tr>
<td>Question Number</td>
<td>Competency Number</td>
<td>Correct Answer</td>
<td>Rationales</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>31</td>
<td>018</td>
<td>A</td>
<td>Option A is correct because the primary purpose of this activity is to engage the students in mathematical discourse and develop their communication skills. Option B is incorrect because inductive reasoning may be used but is not the primary focus. Option C is incorrect because this activity is not part of a summative assessment. Option D is incorrect because technology and manipulatives are not necessarily used in this activity.</td>
</tr>
<tr>
<td>32</td>
<td>019</td>
<td>A</td>
<td>Option A is correct because the formative assessment showed that students need additional instruction and practice in adding fractions. Formative assessments can be designed to determine common errors and misconceptions. Options B and D are incorrect because students should be able to add fractions correctly before learning new material. Option C is incorrect because, while newspaper and Web site searches are interesting and helpful, they do not address the issue of fraction addition.</td>
</tr>
</tbody>
</table>
Study Plan Sheet

<table>
<thead>
<tr>
<th>STUDY PLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content covered on test</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Preparation Resources

The resources listed below may help you prepare for the TExES test in this field. These preparation resources have been identified by content experts in the field to provide up-to-date information that relates to the field in general. You may wish to use current issues or editions to obtain information on specific topics for study and review.

JOURNALS

Mathematics Teacher, National Council of Teachers of Mathematics.

Mathematics Teaching in the Middle School, National Council of Teachers of Mathematics.

OTHER RESOURCES

Online Resources

American Mathematical Society — www.ams.org

Association for Women in Mathematics — www.awm-math.org

Internet4Classrooms — www.internet4classrooms.com

The Mathematical Association of America — www.maa.org

National Association of Mathematicians — www.nam-math.org

National Council of Teachers of Mathematics — www.nctm.org

Pearson Prentice Hall — www.phschool.com

Pearson Welcome K–12 AP Teacher! — www.pearsonhighered.com/educator/K-12_AP_teacher.page

Texas Council of Teachers of Mathematics — www.tctmonline.org
Appendix

TExES CAT Tests Reference Materials

Some TExES CAT tests include additional resource information such as Math Reference Materials, Science Reference Materials, and/or the Periodic Table.

These reference materials can be accessed by selecting the “Help” tool on your screen. To demonstrate, screenshots from sample TExES CAT math and science tests are shown here; the screens you’ll see on your test will be similar.

After selecting “Help”, you will see multiple resource tabs. By selecting a tab, you will be able to view the additional resource materials.

Clicking on Back will take you to the previous screen or question.

You will be able to use a calculator during this test. To use it, just click on the Calc tool and the calculator will appear. You may use the mouse to click on the calculator keys, or you may use the keyboard to enter expressions. If the calculator blocks your view, you can move it by clicking on its title bar and dragging it to another location. To close the calculator, click on Calc again.

Clicking on Help will bring you to Help. From Help you can get information on different topics by clicking on one of the tabs above. You are now in Help.

Clicking on Mark will place a check mark next to the questions you may want to look at on the Review screen. Clicking on Mark again will remove the check mark. A question will remain marked until you unmark it, even if you change the answer.

Clicking on Review will display the Review screen. The Review screen lists all of the questions in the test and their status. The Status column shows if a question has been answered, not answered, or not yet seen. The Mark column shows all questions you have marked for review. The question you were looking at last is highlighted when you enter the Review screen.

Click Return to go on.
To view the Periodic Table select the “Periodic Table” tab.
To view the Science or Math Reference Materials select the “Science Reference” or “Math Reference” tab.
Some TExES CAT tests allow you to use a scientific calculator during the test. To use it, just select the “Calc” tool on your screen and the calculator will appear.
To view more information about how to use the calculator, select the “Calculator” tab on the “Help” screen.

How to Use the Calculator

You will be able to use a scientific calculator on this test. To use it, just click on the Calc tool and the calculator will appear. To hide it, click on the Calc tool again.

You may use the mouse to click on the calculator keys, or you may use the keyboard to enter expressions.

The calculator has a multiline display. To calculate, enter an expression. Then select \(\text{ENT} \) to evaluate. The expression is evaluated and displayed in the upper portion of the display area.